Equilibrium Models of the Marriage Market

P.A. Chiappori Columbia University

Conférence: Développements récents en économie de la famille

INED – Paris, 18-19 mars 2010

Idea: behavior of a group:

- is not identical to that of a single person
- Can be seen as the outcome of an *efficient* process

Idea: behavior of a group:

- is not identical to that of a single person
- Can be seen as the outcome of an *efficient* process

Model:

- individual preferences (non unitary)
- 'power' as measured by Pareto weights (or sharing rule)

Idea: behavior of a group:

- is not identical to that of a single person
- Can be seen as the outcome of an *efficient* process

Model:

- individual preferences (non unitary)
- 'power' as measured by Pareto weights (or sharing rule)

Outcomes:

- Testable restrictions (beyond income pooling)
 - price effects: SNR1 (BC 2002)
 - no price effect: distribution factors proportionality (BBC 2000)
 - labor supply (Chiappori 1988, 92)
- Identification: role of:
 - exclusion restrictions (CE 2008)
 - distribution factors (BBC 2000, CE 2008)

Idea: behavior of a group:

- is not identical to that of a single person
- Can be seen as the outcome of an *efficient* process

Model:

- individual preferences (non unitary)
- 'power' as measured by Pareto weights (or sharing rule)

Outcomes:

- Testable restrictions (beyond income pooling)
 - price effects: SNR1 (BC 2002)
 - no price effect: distribution factors proportionality (BBC 2000)
 - labor supply (Chiappori 1988, 92)
- Identification: role of:
 - exclusion restrictions (CE 2008)
 - distribution factors (BBC 2000, CE 2008)

Empirical applications:

Consumption, labor supply, savings,...

Reference	Outcome	Country	Df's
Anderson & Baland (2002)	Women's participation in a	Kenya	1
	rosca, saving		
Aronsson et al (2001)	Leisure demand	Sweden	2,3,4,5,6
Attanasio & Lechene (2002)	Commodity demands;	Mexico	1
	influence on various decisions		
Barmby & Smith (2001)	Labour supplies	Denmark, UK	2
Bayudan (2006)	Female labour supply	Philippines	2, 11
Bourguignon et al (1993)	Commodity demands	France	1
Browning (1995)	Saving	Canada	1
Browning & Bonke (2006)	Commodity demands	Denmark	1,7,8,10
Browning & Gørtz (2006)	Commodity demands, leisures	Denmark	2,4,7
Browning et al (1994)	Demand for clothing	Canada	1,4,7
Browning & Chiappori (1998)	Commodity demands	Canada	1,4
Chiappori et al (2002)	Labour supplies	US	6
Couprie (2007)	Labour supply and leisure	UK	2,3
Donni (2007)	Labour supplies, demands	France	1,7
Duflo (2003)	Child health	South Africa	1

Ermisch & Pronzato (2006)	Child support payments	UK	1
Fortin & Lacroix (1997)	Joint labour supply	Canada	1,2
Haddad & Hoddinott (1994)	Child health	Cote D'Ivoire	1
Hoddinott & Haddad (1995)	Food, alcohol and tobacco	Cote D'Ivoire	1
Lundberg, et al (1997)	Clothing demands	UK	3
Phipps & Burton (1998)	Commodity demands	Canada	1
Schultz (1990)	Labour supplies and fertility	Thailand	3
Thomas (1990)	Child health	Brazil	3
Udry (1996)	Farm production	Burkina Faso	9
Vermeulen (2005)	Labour supplies	Netherlands	3,4,12

Takes as given:

- group composition
- decision process (Pareto weights)

Takes as given:

- group composition
- decision process (Pareto weights)

Questions:

- group formation: who marries whom?
- distribution of powers as an endogenous phenomenon

Takes as given:

- group composition
- decision process (Pareto weights)

Questions:

- group formation: who marries whom?
- distribution of powers as an endogenous phenomenon

Basic tools:

- matching models (frictionless)
- search models (search frictions)
- bargaining theory

Takes as given:

- group composition
- decision process (Pareto weights)

Questions:

- group formation: who marries whom?
- distribution of powers as an endogenous phenomenon

Basic tools:

- matching models (frictionless)
- search models (search frictions)
- bargaining theory

Here: emphasis on *matching models*

Takes as given:

- group composition
- decision process (Pareto weights)

Questions:

- group formation: who marries whom?
- distribution of powers as an endogenous phenomenon

Basic tools:

- matching models (frictionless)
- search models (search frictions)
- bargaining theory

Here: emphasis on *matching models* Importance of *transfers* ('Gale – Shapley vs Becker – Shapley – Shubik')

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane for all values of prices and income.

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane for all values of prices and income.

In practice:

- Quasi Linear (QL) preferences (but highly unrealistic)
- •'Generalized Quasi Linear (GQL, Bergstrom and Cornes 1981):

$$u_s(x_s,X) = F_s[A_s(x_s^2,\ldots,x_s^n,X) + x_s^1b_s(X)]$$

with $b_s(X) = b(X)$ for all s

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane for all values of prices and income.

In practice:

- Quasi Linear (QL) preferences (but highly unrealistic)
- •'Generalized Quasi Linear (GQL, Bergstrom and Cornes 1981):

$$u_s(x_s,X) = F_s[A_s(x_s^2,\ldots,x_s^n,X) + x_s^1b_s(X)]$$

with $b_s(X) = b(X)$ for all s

Note:

- Ordinal property
- Restrictions on heterogeneity
- But 'acceptably' realistic (Chiappori JET forthcoming)

Properties of TU frameworks

• Unanimity regarding group's decisions

 \rightarrow clear distinction between aggregate behavior and intragroup allocation of power/resources/welfare

 \rightarrow here: concentrate of 'power' issues

 Matching models: stable allocations maximize total surplus

Properties of TU frameworks

• Unanimity regarding group's decisions

 \rightarrow clear distinction between aggregate behavior and intragroup allocation of power/resources/welfare

 \rightarrow here: concentrate of 'power' issues

 Matching models: stable allocations maximize total surplus

→ mathematical structure: optimal transportation models

- Formally:
 - Separable metric spaces X, Y with measures F and G
 - Surplus s(x,y) upper semicontinuous

Stable matches under TU

Match:

- Assignment of spouses (x marries y = f(x))
- Allocation of surplus: u(x) + v[f(x)] = s(x, f(x))

Stability

 $\begin{aligned} u(x) + v(y) &\geq s(x,y) \ \text{ for all } x,y \\ u(x) + v[f(x)] &= s(x, f(x)) \end{aligned}$

Basic property:

(f,u,v) is stable if and only if f maximizes total surplus

Intuition: duality

Basic Duality (finite case)

Primal problem

 $max_{a} \sum_{ik} a_{ik} s_{ik}$ $\sum_{i} a_{ik} \le 1$ $\sum_{k} a_{ik} \le 1$

Basic Duality (finite case)

Primal problem

 $max_{a} \sum_{ik} a_{ik} s_{ik}$ $\sum_{i} a_{ik} \le 1$ $\sum_{k} a_{ik} \le 1$

Dual problem

 $\min_{u,v} \sum_{i} u_{i} + \sum_{k} v_{k}$ $u_{i} + v_{k} \ge s_{ik}$

Supermodularity

Definition: surplus s(x,y) is supermodular iff when x > x' and y > y' then

s(x,y) + s(x',y') > s(x,y') + s(x',y)

Note: if differentiable, then the cross derivative is > 0

Basic property:

If s supermodular, then the only stable match exhibits assortative matching

Intuition: surplus maximization

Structure:

- Men and women, respective income distributions F and G
- TU; surplus s(x,y), derived from a collective model
- Assume s(x,y) supermodular

Structure:

- Men and women, respective income distributions F and G
- TU; surplus s(x,y), derived from a collective model
- Assume s(x,y) supermodular
- Ex. (CIW 07): $u_m = Q (1+q_m)$, $u_f = Q (a+q_f)$, then $s(x,y) = (x+y+a+1)^2/4$ and $D^2_{xy}s = 1/2 > 0$

Structure:

- Men and women, respective income distributions F and G
- TU; surplus s(x,y), derived from a collective model
- Assume s(x,y) supermodular
- In general: s(x,y) = h(x + y) and public goods require h to be supermodular

Structure:

- Men and women, respective income distributions F and G
- TU; surplus s(x,y), derived from a collective model
- Assume s(x,y) supermodular

Then:

• Assortative matching:

 $x = \phi(y) = F^{-1}[G(y)]$ or $y = \psi(x) = G^{-1}[F(x)]$

Structure:

- Men and women, respective income distributions F and G
- TU; surplus s(x,y), derived from a collective model
- Assume s(x,y) supermodular

Then:

Assortative matching:

 $x = \phi(y) = F^{-1}[G(y)]$ or $y = \psi(x) = G^{-1}[F(x)]$

• Individual utilities can be derived

From $u(x) = \max_{y} s(x, y) - v(y)$

From $u(x) = \max_{y} s(x, y) - v(y)$ we get $u'(x) = \frac{\partial s(x, \psi(x))}{\partial x}$ and $v'(y) = \frac{\partial s(\phi(y), y)}{\partial y}$

From
$$u(x) = \max_{y} s(x, y) - v(y)$$

we get
 $u'(x) = \frac{\partial s(x, \psi(x))}{\partial x}$ and $v'(y) = \frac{\partial s(\phi(y), y)}{\partial y}$

 ∂x

therefore:

$$u(x) = k + \int_0^x \frac{\partial s(t,\psi(t))}{\partial x} dt$$
 and $v(y) = k' + \int_0^y \frac{\partial s(\phi(t),t)}{\partial y} dt$

From
$$u(x) = \max_{y} s(x, y) - v(y)$$

we get
 $u'(x) = \frac{\partial s(x, \psi(x))}{\partial x}$ and $v'(y) = \frac{\partial s(\phi(y), y)}{\partial y}$

therefore: $u(x) = k + \int_0^x \frac{\partial s(t,\psi(t))}{\partial x} dt$ and $v(y) = k' + \int_0^y \frac{\partial s(\phi(t),t)}{\partial y} dt$

with k + k' = s(0, 0)

From
$$u(x) = \max_{y} s(x, y) - v(y)$$

we get
 $u'(x) = \frac{\partial s(x, \psi(x))}{\partial x}$ and $v'(y) = \frac{\partial s(\phi(y), y)}{\partial y}$

 ∂x

therefore: $u(x) = k + \int_0^x \frac{\partial s(t,\psi(t))}{\partial x} dt$ and $v(y) = k' + \int_0^y \frac{\partial s(\phi(t),t)}{\partial y} dt$

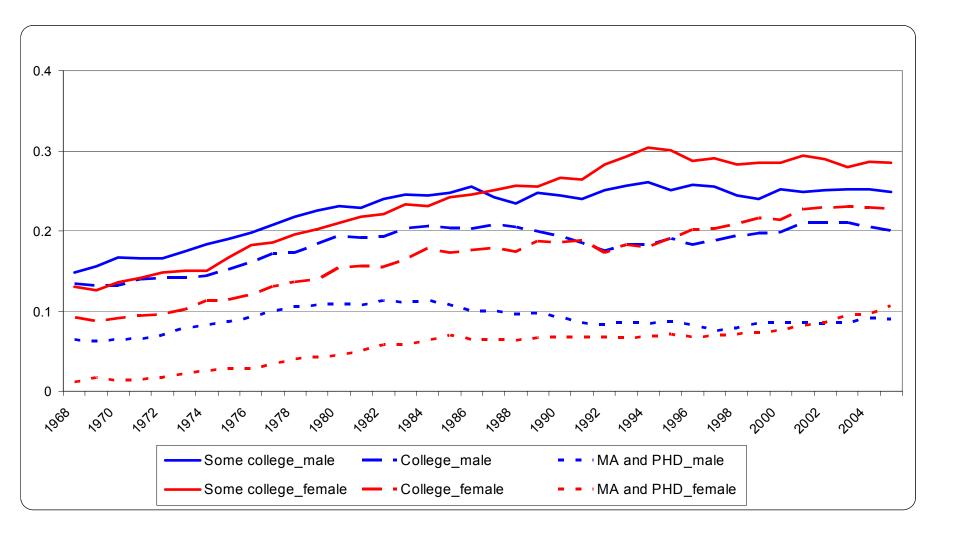
with k + k' = s(0,0)

\rightarrow Endogenize the Pareto weight!

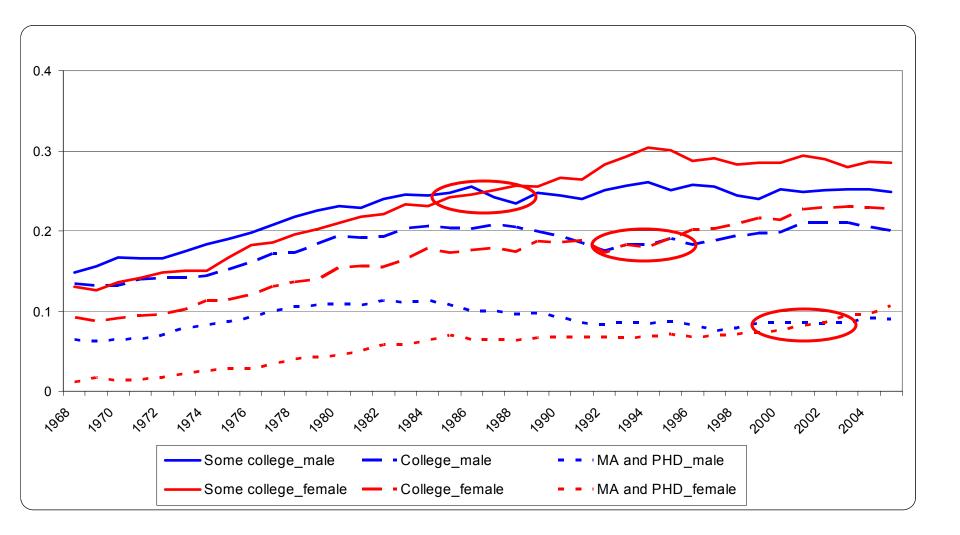
Example: shifting female income distribution

Example: shifting female income distribution

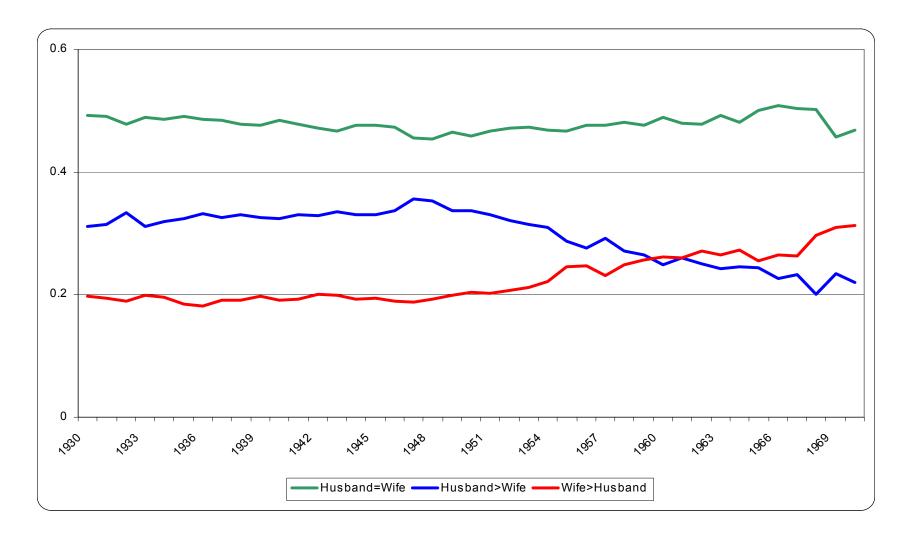
Motivation: remarkable increase in female education, labor supply, incomes during the last decades.



Proportion of some college, college and advanced degrees, by sex, age 30-40



Proportion of some college, college and advanced degrees, by sex, age 30-40



Education of Spouses, by Husband's Year of Birth, US

Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

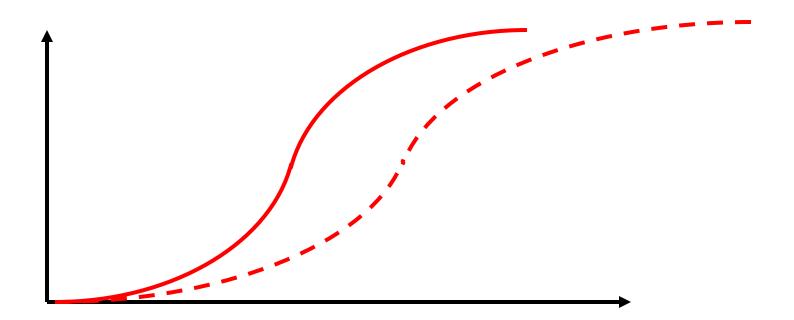
Question: impact on intrahousehold allocation?

Assume

• $F(t) = G(\lambda t)$ for $\lambda < 1$ (then $\phi(y) = y/\lambda$ and $\psi(x) = \lambda x$)

Assume

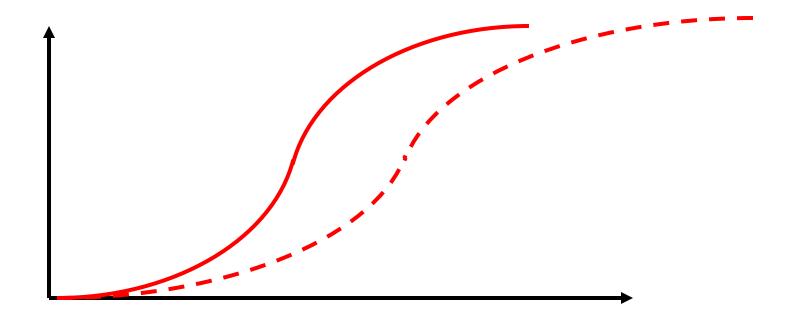
• $F(t) = G(\lambda t)$ for $\lambda < 1$ (then $\phi(y) = y/\lambda$ and $\psi(x) = \lambda x$)



Assume

• $F(t) = G(\lambda t)$ for $\lambda < 1$ (then $\phi(y) = y/\lambda$ and $\psi(x) = \lambda x$)

Note: for instance, LogNormal distributions with different μ but same σ .



Assume

• $F(t) = G(\lambda t)$ for $\lambda < 1$ (then $\phi(y) = y/\lambda$ and $\psi(x) = \lambda x$)

and

• s(x, y) = H(x+y), H(0) = 0

Then

 $v(y) = \frac{\lambda}{\lambda+1}H(\phi(y)+y)$ and $u(x) = \frac{1}{\lambda+1}H(x+\psi(x))$

Then

$$v(y) = \frac{\lambda}{\lambda+1}H(\phi(y)+y)$$
 and $u(x) = \frac{1}{\lambda+1}H(x+\psi(x))$

Upward shift in female incomes: y becomes ay, a > 1Then in the neighborhood of a = 1

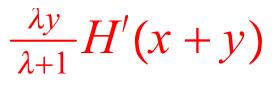
$$\frac{\partial v}{\partial a} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

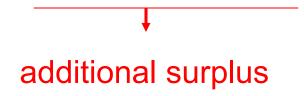
Then

 $\frac{\partial v}{\partial a} =$

$$v(y) = \frac{\lambda}{\lambda+1}H(\phi(y)+y)$$
 and $u(x) = \frac{1}{\lambda+1}H(x+\psi(x))$

Upward shift in female incomes: y becomes ay, a > 1Then in the neighborhood of a = 1





Then

$$v(y) = \frac{\lambda}{\lambda+1}H(\phi(y)+y)$$
 and $u(x) = \frac{1}{\lambda+1}H(x+\psi(x))$

Upward shift in female incomes: y becomes ay, a > 1Then in the neighborhood of a = 1

$$\frac{\partial v}{\partial a} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y) + \frac{\lambda y}{\lambda+1} H'(x+y)$$

$$\frac{\partial v}{\partial x} = \frac{\lambda}{(\lambda+1)^2} H(x+y)$$

Some applications

Application 1: matching on preferences (CO JPE 06)

- Continuum of men and women; one private commodity → intrahousehold allocation of consumption an issue; children
- Men all identical; quasi linear utility $U_H(a_H, k) = a_H + u_H k$ if married; zero utility of children if single

Or: heterogeneous males: u_H distributed over [-A, B]

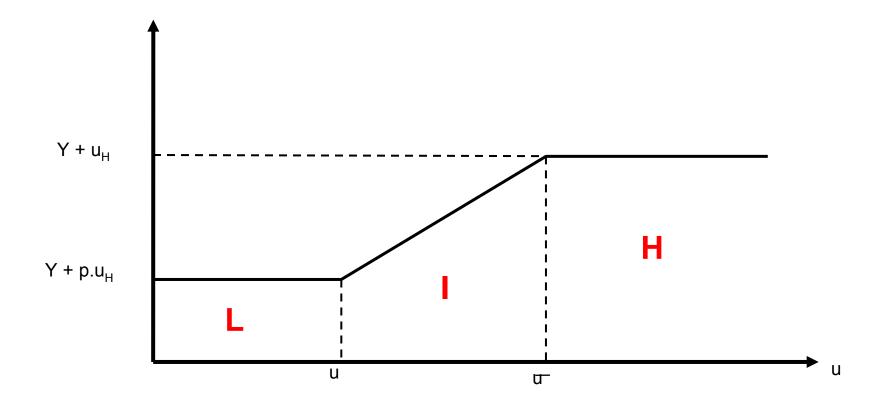
- Women: quasi linear utility U(a,k) = a + uk where u belongs to [0,U], density f; note that utility is *transferable*.
- Income: men Y, women y without children, z < y with children
- Unwanted pregnancies, probability *p*
- Frictionless marriage market (matching model); surplus generated by children
 - \rightarrow equilibria as stable matches
- Mass 1 of women, *M* of men

Fertility decisions

- Single women
 - If $u < y z = \overline{u}$: no children
 - Otherwise: children
- Couples
 - Efficiency: children if maximizes total surplus
 - Hence: children if $u > y z u_H = \underline{u}$;
- Hence three types of women (depending on preferences):
 - 'low': $U < \underline{U}$ never want a child
 - 'intermediate': $\underline{u} < u < \overline{u}$ want a child **only** when married
 - 'high': $U > \overline{U}$ always want a child
- Heterogeneous men: same, but <u>*U*</u> is match specific

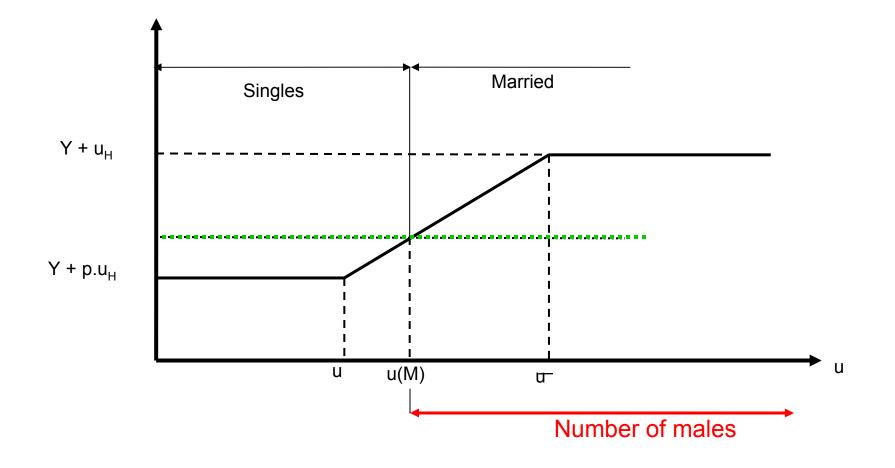
Stable match: excess supply of women

Basic graph: husband's *maximal* utility (as a function of u)

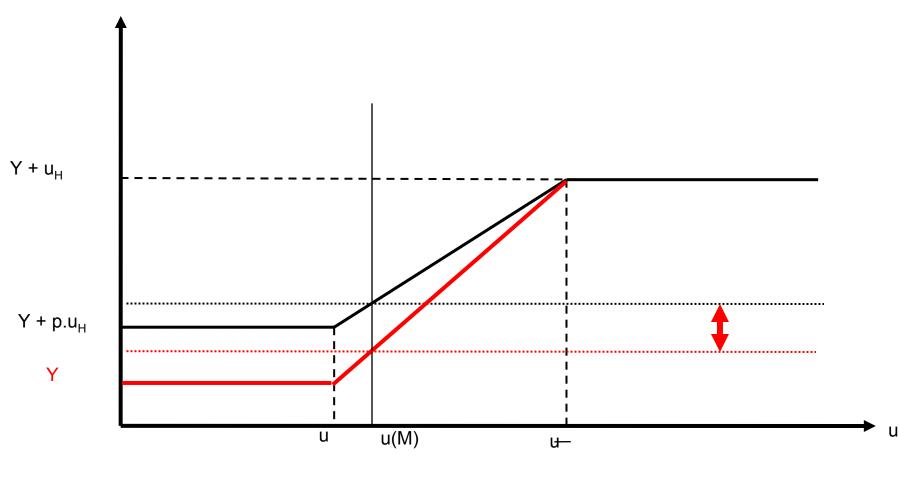


Stable match: excess supply of women

Basic graph: husband's maximal utility (as a function of u)



Application: legalizing abortion



Application 2: matching and investments in education (BCW AER 09)

Basic puzzle: asymmetric reactions to increasing returns to education

Figure 13: Completed Education by Sex, Age 30-40, US 1968-2005

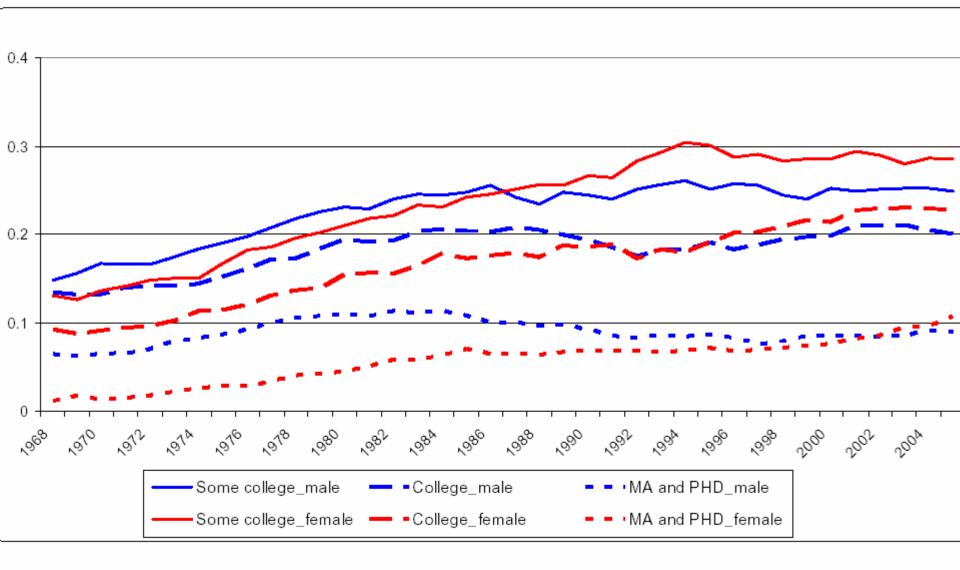
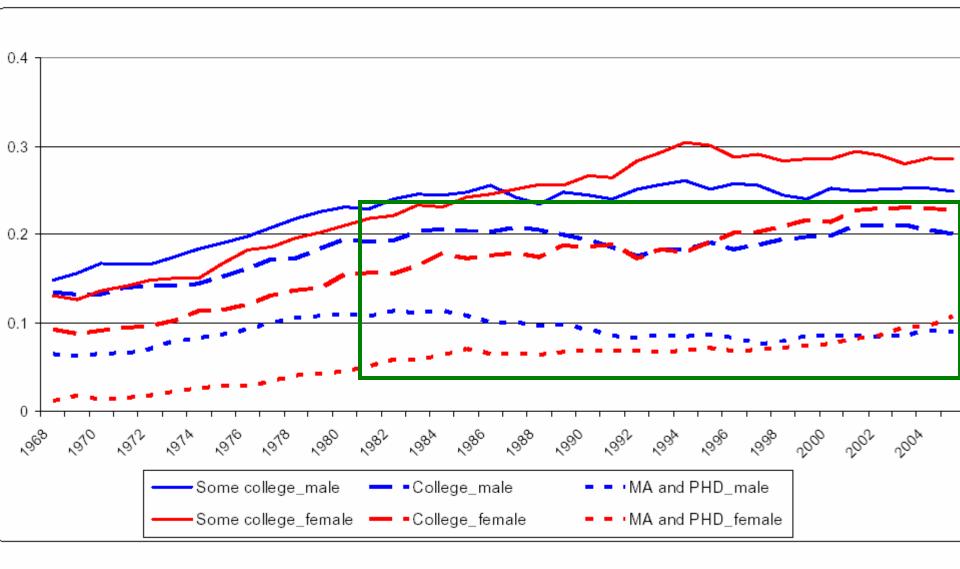


Figure 13: Completed Education by Sex, Age 30-40, US 1968-2005



Application 2: matching and investments in education (BCW AER 09)

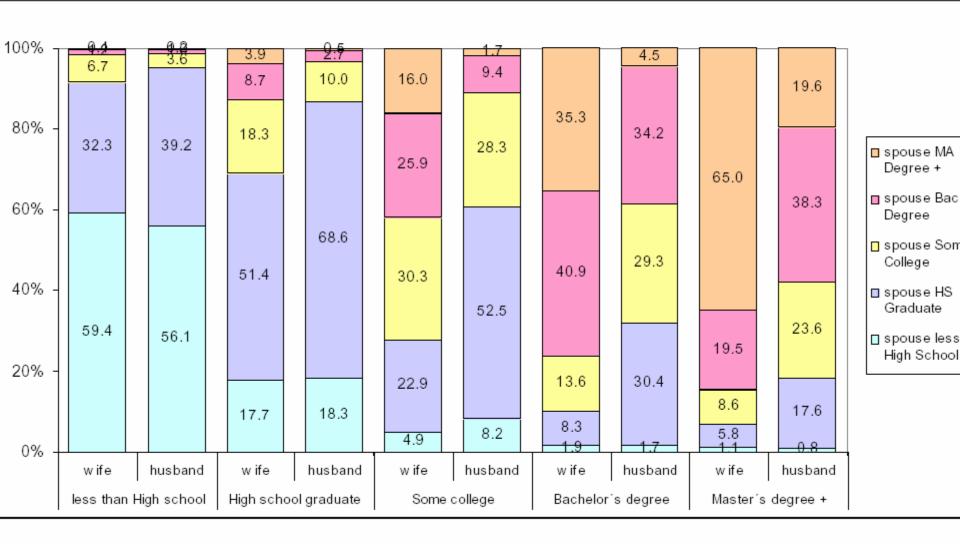
Basic puzzle: asymmetric reactions to increasing returns to education

Explanation:

1. Gender discrimination smaller for high incomes

2. Intrahousehold effects

- Returns to education have two components: market and intrahousehold
- If larger percentage of educated women, affects matching patterns
- Cost of not being educated are higher



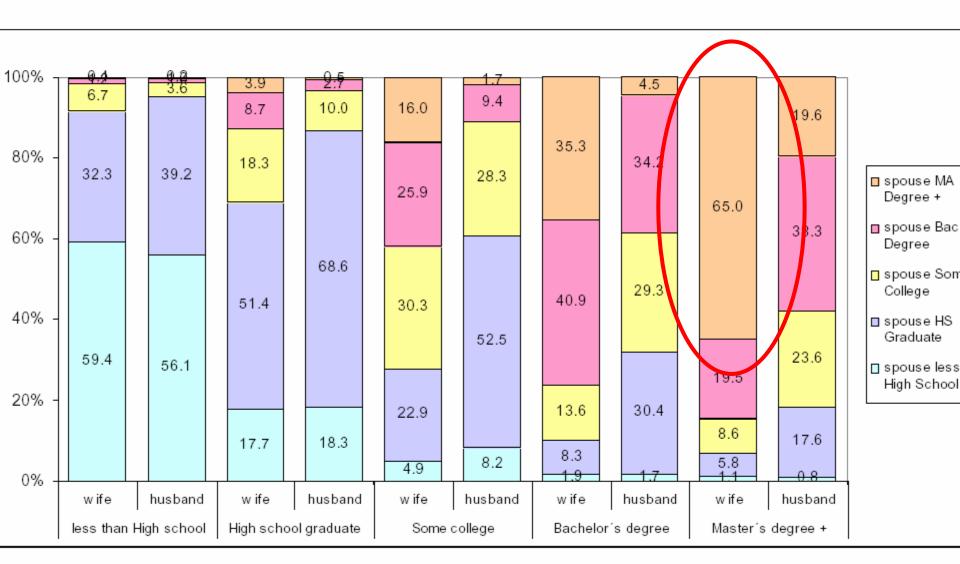


Figure 15a: Spouse Education by own Education, Ages 30-40, US 1970-79



Figure 15b: Spouse Education by own Education, Ages 30-40, US 1996-2005

The model

- Two equally large populations of men and women to be matched.
- Individuals live two periods; investment takes place in the first period of life and marriage in the second period; investment in schooling is lumpy and takes one period.
- All agents of the same level of schooling and gender receive the same wage.
- I(i) and J(j) are the schooling "class" of man i and woman j: I(i)=1 if i is uneducated and I(i)=2 if he is educated, J(j)=1 if j is uneducated and J(j)=2 if she is educated.
- Transferable utility; marital surplus if man i marries woman j:

$$s_{ij} = z_{I(i)J(j)} + \theta_i + \theta_j$$

with

$$z_{11} + z_{22} > z_{12} + z_{21}$$

The model

- Investment in schooling is associated with idiosyncratic cost (benefit), µ_i for men and µ_i for women.
- θ and μ independent from each other and independent across individuals; distributions F(θ) and G(μ).
- Shadow price of woman j is u_i , shadow price of man i is v_i ; stability:

$$z_{I(i)J(j)} + \theta_i + \theta_j \le v_i + u_j$$

therefore

$$v_i = Max \{ Max_j [z_{I(i)J(j)} + \theta_i + \theta_j - u_j], 0 \}$$
$$u_j = Max \{ Max_i [z_{I(i)J(j)} + \theta_i + \theta_j - v_i], 0 \}.$$

Findings

Compare an "old" regime a "new" regime. In the old regime:

- lower returns to education
- more time to be spent at home
- 'social norms'

In both regimes women suffer from statistical discrimination and earn less than men; weaker against educated women. Then:

- Schooling serves as an instrument for women to escape discrimination.
- The return for education of women within marriage is higher in the new regime and the may invest more than men.

• Some women marry down and the returns of schooling of men declines.

Application 3: marriage dynamics and the impact of divorce laws (CIW)

Basic question:

Take a reform of laws governing divorce, which favors women (typically: income/wealth sharing). What would be the impact on intrahousehold allocation?

Note: UK 2000 (see Kapan)

Answer: basic distinction between existing couples and couples to be formed.

- Existing couples: unambiguously favors women
- Future couples: the law is *taken into account* at the matching stage
 - No impact on lifetime utilities
 - Only impact on timing
 - Women lose during marriage, especially at the beginning
 - Application: Wolfers,...

Conclusion

- 1. Matching models provide an interesting technology for
 - studying marital patterns
 - assessing the consequences in terms of intrahousehold allocation
- 2. Alternative approaches are possible (search,...)
- 3. Promising empirical perspectives : *joint* estimation of matching and household behavior